SALT LAKE CITY — The ability to create, from scratch, a custom-matched organ to replace a failing liver, pancreas or heart could be a lot closer than most people think.

University of Utah researcher Robert Bowles has hit a benchmark in his work to recreate tendon and ligament tissue using stem cells harvested from fat tissue and a modified 3D printer.

While a far cry, on a complexity basis, from the organs that pump and filter blood or create necessary stomach enzymes, the work Bowles and his team are doing is advancing a quest that is drawing increasing interest, and hundreds of millions in private and public investment.

Bowles, who is also a professor of bioengineering specializing in the musculoskeletal system, said his technique could lead to the ability to print replacement tissues for those suffering from damaged tendons, ligaments or spinal disc ruptures.

“It will allow patients to receive replacement tissues without additional surgeries and without having to harvest tissue from other sites, which has its own source of problems,” Bowles said.

He said the process involves layering stem cells on a hydrogel medium, using a modified 3D printer, which can then be grown in the lab for later implantation. The printer head is designed in a way that allows researchers to control how the cells are organized — critical to tissue generation — that leads to positive outcomes.

“This is a technique in a very controlled manner to create a pattern and organizations of cells that you couldn’t create with previous technologies,” Bowles said. “It allows us to very specifically put cells where we want them.”

Utah biomedical firm Carterra supported Bowles’ work, including providing the printer that was modified to perform the tissue generation process. Bruce Gale, director of research at Carterra and chairman of the U.’s Department of Mechanical Engineering, said while creating a complex organ with a 3D printer is still on the horizon, Bowles’ work is helping make strides toward making it scientific reality.

“Dr. Bowles has been able to show that he can print and develop tissues that closely replicate what happens in the body using Carterra printers,” Gale said. “We’re excited about the opportunity to work with him on perfecting this technique.”

Richard Brown, dean of the U.’s College of Engineering, said the research Bowles and his team are doing reflects the advances possible in a high-tech approach to addressing medical challenges.

“Dr. Bowles and his student, David Ede, have developed a …read more

Source:: Deseret News – Business News


(Visited 3 times, 1 visits today)
U. tissue engineering research paving way to ‘printable’ human organs

Leave a Reply

Your email address will not be published. Required fields are marked *